目前針對垃圾滲濾液、污泥消化液、工業(yè)廢水等高氨氮污水的厭氧氨氧化脫氮研究被廣泛開展。然而,針對低氨氮的生活污水,厭氧氨氧化的應(yīng)用性研究還很缺乏。城市生活污水水質(zhì)浮動較大、水量變化范圍大、氨氮含量低、受溫度影響大等特點限制了厭氧氨氧化在主流城市生活污水處理中的應(yīng)用。
基于此,本文從厭氧氨氧化菌在城市污水處理廠中的分布及限制條件、顆粒污泥的影響因素、厭氧氨氧化在城市污水處理廠的應(yīng)用、厭氧氨氧化組合工藝、厭氧氨氧化工程案例分析等角度出發(fā),探討厭氧氨氧化脫氮技術(shù)在城市生活污水處理方面的影響因素及適用性。
一、厭氧氨氧化菌在城市生活污水處理廠中的豐度及多樣性
厭氧氨氧化菌是屬于浮霉菌門類的自養(yǎng)厭氧菌,迄今已有6種具有厭氧氨氧化代謝活動的菌屬被發(fā)現(xiàn),如圖1所示,厭氧氨氧化菌屬屬于化能自養(yǎng)微生物,通常是以亞硝酸根作為電子受體,氧化氨根離子為氮氣。然而,在不同生態(tài)系統(tǒng)中存在的厭氧氨氧化菌屬差異性很大,例如海水、淡水、不同來源的污泥、苦咸水及陸生生態(tài)系統(tǒng)中菌屬差異性較大。與此同時,與厭氧氨氧化菌相關(guān)的菌種CandidatusBrocadiacaroliniensis和CandidatusBrocadiasinica已經(jīng)在世界范圍內(nèi)的污水處理系統(tǒng)中被廣泛發(fā)現(xiàn),其中,Leal等已經(jīng)成功在污水處理廠的剩余污泥中富集培養(yǎng)了厭氧氨氧化細菌,這也為厭氧氨氧化污水處理技術(shù)在生活污水處理廠的實際應(yīng)用提供了可靠的理論支持。
1.1生物種群間的影響關(guān)系
生物種群的多樣性是制約厭氧氨氧化技術(shù)可行性的關(guān)鍵性因素。在厭氧氨氧化污水處理技術(shù)應(yīng)用過程中,厭氧氨氧化細菌(anaerobicammoniaoxidizingbacteria,AnAOB)與氨氧化細菌(ammoniaoxidizingbacteria,AOB)、亞硝酸鹽氧化細菌(nitriteoxidizingbacteria,NOB)、反硝化細菌(denitrifyingbacteria,DNB)之間的協(xié)同與競爭關(guān)系是實現(xiàn)厭氧氨氧化工程應(yīng)用的關(guān)鍵性因素。AOB作用主要發(fā)揮在厭氧氨氧化反應(yīng)的準備階段,通過控制曝氣,AOB可以氧化50%的氨氮到亞硝階段,為后續(xù)反應(yīng)提供足夠的電子受體。城市生活污水溫度會受季節(jié)性波動影響,且在低氨氮負荷下,NOB生長速率會高于AOB,同時,游離氨(freeammonia,F(xiàn)A)和游離亞硝酸(freenitrousacid,F(xiàn)NA)的質(zhì)量濃度會產(chǎn)生波動,從而對NOB的抑制作用產(chǎn)生極大影響,使得AnAOB失去足夠的電子受體,最終會導(dǎo)致硝酸鹽累積,進而使得脫氮效率下降。AnAOB生長速度相較于DNB要慢,而且細胞增殖產(chǎn)量也較低,同時,在厭氧條件下DNB主要是通過競爭電子受體(NO-2)而抑制AnAOB活性,但是有研究發(fā)現(xiàn),為了有效地去除城市生活污水中的氨氮和有機物,AnAOB和DNB也可以實現(xiàn)共存。
1.2環(huán)境因素對生物多樣性的影響
環(huán)境條件的變化(有機物、pH、溫度、溶解氧)對厭氧氨氧化生物群落的影響制約著整個反應(yīng)運行過程及處理效果。城市生活污水有機物化學需氧量(chemicaloxygendemand,COD)質(zhì)量濃度為600~1400mg/L,有研究表明,當有機物COD的質(zhì)量濃度超過300mg/L時,會對AnAOB產(chǎn)生明顯的抑制作用[38]。Kartal等研究證明,城市生活污水中乙酸和丙酸存在條件下,AnAOB在與反硝化菌競爭過程中顯示出明顯優(yōu)勢,證實了在高COD存在的城市生活污水中AnAOB可以保持活性。在有機物存在條件下,厭氧氨氧化菌屬發(fā)生明顯轉(zhuǎn)化(CandidatusBrocadiasinica寅CandidatusJetteniacaeni,CandidatusKueneniastuttgartiensis),這與AnAOB的耐高有機物特性有關(guān)。城市生活污水中氨氮質(zhì)量濃度較低,因此城市生活污水存在普遍的高碳氮比。然而,當碳氮比超過4時將可能影響厭氧氨氧化反應(yīng)進程,且隨著碳氮比增加,AnAOB活性減弱而DNB會更具有競爭性。文獻表明,低溫和高有機負荷條件下更有利于異養(yǎng)反硝化菌的增殖,從而使得AnAOB失去大量電子受體且造成大量硝酸鹽累積,這也是制約Anammox工藝在主流城市生活污水處理廠應(yīng)用的關(guān)鍵因素。然而,Nejidat等研究了城市污水處理廠(其碳氮比大于13)不同隔間內(nèi)的厭氧氨氧化菌的豐度和多樣性,結(jié)果表示,高碳氮比的主流城市污水處理廠中,AnAOB可以生長并具有活性,其中CandidatusBrocadiaflugida在污水處理廠中占主導(dǎo)地位,這也為厭氧氨氧化工藝在高碳氮比的城市生活污水處理廠中的應(yīng)用提供了參考依據(jù)及調(diào)控手段。
厭氧氨氧化過程的實現(xiàn)需要依靠pH來調(diào)節(jié)穩(wěn)定,Anammox對pH變化比較敏感,在厭氧氨氧化工藝運行各個階段對pH的控制尤為重要。文獻指出,pH在6.7~8.3內(nèi)變化時更適宜AnAOB生長,且在pH=8.0時AnAOB反應(yīng)速率達到峰值,然而Egli等在旋轉(zhuǎn)生物接觸器處理富含高氨氮滲濾液的研究中提出更廣的適宜范圍(6.5~9.3)。Zhu等指出厭氧氨氧化細菌膜的低滲透性和有限的質(zhì)子擴散保護細菌不受酸性或堿性條件的影響。厭氧氨氧化工藝運行過程中會消耗一定量的H+,所以隨著反應(yīng)的進行往往伴隨著溶液pH的增加,而且強堿強酸條件下可能會對AnAOB有抑制作用,所以在實際工程應(yīng)用過程中有效的控制pH的變化對于維持厭氧氨氧化工藝的穩(wěn)定運行至關(guān)重要。城市生活污水受季節(jié)性影響較大,尤其在低溫情況下,適當提高pH有利于維持CandidatusKueneniastuttgartiensis細胞內(nèi)pH梯度穩(wěn)定,對于保持處理系統(tǒng)穩(wěn)定性和良好的處理效果具有重要意義。
溫度是影響微生物生長的關(guān)鍵因素,也直接影響厭氧氨氧化微生物群落相對豐度。季節(jié)性溫度變化是制約厭氧氨氧化工藝在實際生活污水處理中應(yīng)用的主要因素之一。文獻表明,溫度對AnAOB的影響高于pH。略高溫(35~40℃)有利于厭氧氨氧化生物種群的生長并可以縮短倍增時間,但是高溫(>45℃)會不可逆地造成細胞裂解,嚴重影響處理效果。同時,溫度的降低也會影響AnAOB的活性,而且低溫更有利于異養(yǎng)反硝化菌的繁殖,從而制約厭氧氨氧化工藝在實際城市生活污水處理廠中的運行。然而,Hu等采用配水,研究低溫(12℃)下,AOB與AnAOB組合脫氮效能,結(jié)果顯示AOB和AnAOB都具有較高的活性,厭氧氨氧化反應(yīng)器中的優(yōu)勢菌CandidatusBrocadiafulgida的相對豐度在溫度變化情況下變化不大,由此實現(xiàn)了高氨氮去除率(90%)。雖然低溫條件對于AnAOB的生長有很大影響,但是AnAOB可以適應(yīng)低溫環(huán)境并保證反應(yīng)的順利進行。因此,溫度對于厭氧氨氧化雖然存在一定的影響,但通過培養(yǎng)和馴化,AnAOB可以適應(yīng)一定的低溫環(huán)境。所以,如何有效地控制溫度變化和馴化AnAOB的低溫適應(yīng)性,是發(fā)揮AnAOB功能性作用及抑制異養(yǎng)反硝化菌活性的關(guān)鍵性步驟。
AnAOB屬于厭氧細菌,反應(yīng)條件中溶解氧(dissdvedoxygen,DO)的控制對于AnAOB活性具有至關(guān)重要的作用。DO對于厭氧氨氧化整個生物群落具有一定的影響,其中在有氧限制條件下,AOB和NOB對氧的競爭是實現(xiàn)對NOB有效控制的方法之一。Dytczak等研究發(fā)現(xiàn),當DO的質(zhì)量濃度大于1.5mg/L時AOB相較于NOB表現(xiàn)出更高的活性,從而對于NOB抑制作用效果俱佳。然而,當操作溶解氧設(shè)定點的AOB和NOB的比增長率接近時,如果工藝僅限于氧氣限制,則無論液相溶解氧的控制水平如何,都很難抑制NOB。因此,厭氧氨氧化工藝在實際運行過程中,限制氧供量,可以有效地抑制NOB的活性,提高AOB和AnAOB的轉(zhuǎn)化效率。王俊安等在城市生活污水亞硝化反應(yīng)器的啟動與運行研究中,確定的DO控制范圍為0.3~0.5mg/L。因此,由于城市生活污水受季節(jié)性變化影響較大,可以將AnAOB接種到亞硝化活性污泥反應(yīng)器中,同時控制DO質(zhì)量濃度0.5mg/L左右,可以有效地通過短程硝化-厭氧氨氧化實現(xiàn)城市生活污水深度脫氮
二、厭氧氨氧化工藝在城市生活污水處理中的應(yīng)用
厭氧氨氧化工藝由于AnAOB倍增時間比較緩慢、微生物群落間的復(fù)雜關(guān)系、季節(jié)性溫度變化、生活污水碳氮比變化較大等因素制約著其在主流城市生活污水中的應(yīng)用與發(fā)展。在世界范圍內(nèi),已有110多座厭氧氨氧化工程在運行,而其中75%的主要應(yīng)用于城市生活污水的側(cè)流處理?,F(xiàn)階段中國針對厭氧氨氧化在城市生活污水處理的研究還大多停留在實驗室水平的人工配水上,然而,人工配水相比于實際城市生活污水污染物而言,其種類單一,水質(zhì)變化較小,因此,目前對于實際工程應(yīng)用尚缺少一定的理論依據(jù)。張樹德等采用城市生活污水處理廠的二級出水來培養(yǎng)AnAOB的研究實驗中,采用向下流式生物濾池作為主要的反應(yīng)容器,論證了Anammox工藝在高氨氮廢水的處理中可以起到良好的處理效果,同時也可用于城市污水深度處理中,而這對于城市生活污水的深度脫氮具有深遠的現(xiàn)實意義。DeAlmeida等在探討溫度對于處理城市污水的厭氧氨氧化反應(yīng)器里微生物多樣性及脫氮性能影響中指出,在典型的熱帶溫度下,將厭氧氨氧化工藝應(yīng)用于主流城市污水處理是可行的。
污泥消化液的厭氧氨氧化處理屬于城市生活污水的側(cè)流應(yīng)用的一種,可以去除進水總氮負荷的25%,目前已經(jīng)被廣泛研究并已在國外展開了相關(guān)應(yīng)用。Leal等向富含AnAOB菌的序批式反應(yīng)器(sequencingbatchreactor,SBR)中接種預(yù)處理過的城市生活污水,可獲得較高的COD、亞硝酸鹽和氨氮去除率(分別為80%、90%和95%),從而論證了厭氧氨氧化工藝實現(xiàn)城市生活污水深度脫氮的可能性。厭氧氨氧化工藝的側(cè)流應(yīng)用能力有限,厭氧氨氧化在主流城市生活污水中的應(yīng)用可以很大程度上實現(xiàn)污水處理廠的能源自給自足。
三、厭氧氨氧化過程中顆粒污泥的應(yīng)用
在傳統(tǒng)的污水生物處理中,通常通過硝化過程將氨氮氧化成硝態(tài)氮,而這個過程需要消耗大量的氧氣。之后,硝態(tài)氮通過反硝化作用轉(zhuǎn)化為氮氣,但這一過程還需有機物作為碳源,而通常對于碳氮比較低的污水還需額外添加碳源如甲醇等。在傳統(tǒng)的污水生物處理中,通常還會差生大量的剩余污泥,因此還需對剩余污泥進行進一步處理,進一步增大了污水的處理成本。
然而,AnAOB生長緩慢,倍增時間為7~12d,因此Anammox工藝剩余污泥量產(chǎn)生少,省去了剩余污泥的處理系統(tǒng),節(jié)約了處理成本。目前Anammox工藝更多的是用于處理含氨氮含量高的污水。但是如果使用快速沉降的硝化細菌和厭氧氨氧化細菌(一種“顆粒污泥冶)共培養(yǎng)的緊密顆粒,可以保留更多的生物量,提高處理效果。顆粒污泥反應(yīng)器現(xiàn)在已被開發(fā)用于在厭氧和好氧條件下去除有機物和營養(yǎng)物。由于顆粒污泥系統(tǒng)具有較高的體積轉(zhuǎn)化率,因此也可在城市污水低溫和低氨氮條件下應(yīng)用富含厭氧氨氧化菌的顆粒污泥處理污水。高夢佳等采用人工配水培養(yǎng)了厭氧氨氧化顆粒污泥,探究了厭氧氨氧化顆粒污泥對于城市生活污水的處理效果,研究表明,AnAOB所占比例下降,AOB和NOB比例增加,有效地控制溶解氧后,會減少出水硝態(tài)氮質(zhì)量濃度,提高總氮去除率。有研究指出,厭氧氨氧化顆粒污泥在耐外部環(huán)境波動性方面明顯優(yōu)于絮狀污泥,而且AnAOB的活性會隨著顆粒污泥粒徑的減少而減弱,因此,對于高負荷的城市生活污水來說,Miao等研究發(fā)現(xiàn),COD對胞外聚合物(extracellularpolymericsubstance,EPS)有影響,而EPS通過促進細胞和污泥顆粒的聚集而促進顆粒污泥的形成。由此可知,合理地控制城市污水中有機物的影響進而可通過顆粒污泥實現(xiàn)厭氧氨氧化細菌培養(yǎng)周期的縮短,對于提高實際工程應(yīng)用也具有一定的現(xiàn)實意義。
四、厭氧氨氧化組合工藝在城市生活污水中的應(yīng)用
4.1部分短程硝化-厭氧氨氧化(partialnitrificationanammox,PNA)
PNA技術(shù)在處理高氨氮廢水方面已經(jīng)取得了長足的發(fā)展,但該技術(shù)針對城市生活污水處理方面還缺乏有力的理論依據(jù)及實際資料的考證。研究表明,超過50%的PNA裝置是序批式反應(yīng)器,88%的裝置作為單級系統(tǒng)運行。PNA作為一種高效的生物氮技術(shù),被認為是傳統(tǒng)生物脫氮的一種節(jié)省成本的替代方法。PNA工藝相較于傳統(tǒng)的硝化/反硝化過程,可以實現(xiàn)耗氧量減少60%,有機碳源減少100%,污泥產(chǎn)生量減少90%
迄今PNA工藝對于處理城市生活污水的研究已經(jīng)在實驗室小試和中試上取得了很大的進展。Yang等采用生物除磷-部分硝化-厭氧氨氧(EBPR-PNA)化組合工藝,實現(xiàn)了城市污水中有機碳、磷、氮的同步去除。Cao等探討了PNA處理城市污水的現(xiàn)狀、瓶頸,并指出PNA技術(shù)廣泛應(yīng)用的瓶頸主要是:1)預(yù)處理中碳源的不穩(wěn)定性;2)在低溫下如何實現(xiàn)對NOB的抑制;3)低溫條件下AnAOB活性。Ma等采用間歇曝氣PNA技術(shù),探討了進水碳氮比對PNA工藝脫氮的影響,研究發(fā)現(xiàn),當碳氮比從1.1升至2.5時,PNA對生活污水中的總氮(totalnitrogen,TN)的去除率由30.8%升至70.3%,這也為PNA工藝在從城市生活污水中的應(yīng)用提供了良好的理論研究基礎(chǔ)。楊慶等控制持低碳氮比,采用生物濾池為反應(yīng)裝置研究分析了PNA工藝對于生活污水脫氮效率,經(jīng)過173d的培養(yǎng)試驗,PNA工藝在生物濾池實現(xiàn)了快速啟動,脫氮效率較高,該系統(tǒng)出水TN平均質(zhì)量濃度為8mg/L,實現(xiàn)了PNA工藝穩(wěn)定高效地處理生活污水。
4.2同時部分硝化-厭氧氨氧化-反硝化(SNAD)
Ma等研究指出,PNA工藝在處理低氨氮污水過程中會出現(xiàn)NO-3-N累積,影響出水TN質(zhì)量濃度。因此,一種新型的可繼續(xù)通過反硝化將NO-3-N去除的處理工藝(simulataneouspovrtialnitrification,Ananmoxanddenitrification,SNAD)應(yīng)運而生。在SNAD中,氨氮在低氧質(zhì)量濃度下通過AOB部分轉(zhuǎn)化為亞硝酸鹽,然后AnAOB菌再利用剩余的氨氮和轉(zhuǎn)化的亞硝酸鹽通過厭氧氨氧化反應(yīng)生成氮氣和硝酸鹽,最后DNB利用碳源通過反硝化反應(yīng)將硝酸鹽轉(zhuǎn)化為氮氣
Ding等通過SNAD技術(shù)利用懸浮活性污泥處理生活污水,建立了以懸浮活性污泥代替生物膜或培養(yǎng)顆粒污泥的SNAD工藝,在不預(yù)處理COD的情況下,碳氮比為3.0~3.5,處理實際生活污水,其研究為實際應(yīng)用提供了參考。Wang等通過SNAD利用非織造旋轉(zhuǎn)生物反應(yīng)器處理低碳氮比的城市污水中,實現(xiàn)了好氧外層AOB占微生物菌落的65.13%,厭氧內(nèi)層以AnAOB(47.17%)和DNB(38.91%)為主,也為SNAD在城市生活污水中的應(yīng)用提供了技術(shù)支持。SNAD生物膜具有良好的厭氧氨氧化和反硝化特性,鄭照明等依托生物膜載體通過分批試實驗研究了同步亞硝化、厭氧氨氧化耦合反硝化,在處理城市生活污水的脫氮性能,結(jié)果表明,SNAD生物膜可減輕pH對厭氧氨氧化菌的抑制,同時該工藝也獲得了較好的脫氮效果(NH+4-N、NO-2-N和TIN去除速率分別為0.121、0.180和0.267kg/d。
4.3短程反硝化-厭氧氨氧化(partialdenitrificationanammox,PDA)
短程反硝化,是指將硝酸鹽還原為亞硝酸鹽,從而為厭氧氨氧化提供基質(zhì)。Du等通過2組序批式反應(yīng)器成功提出了一種創(chuàng)新組合工藝(短程反硝化厭氧氨氧化),該組合工藝實現(xiàn)了平均出水氮去除率為94.06%,出水總氮平均為10.98mg/L。在低溫條件下,短程反硝化-厭氧氨氧化同時處理硝酸鹽和生活污水效果明顯(NO-3-N、NH+4-N和COD的平均去除率分別為89.5%、97.6%和78.7%)。這也為厭氧氨氧化工藝在低溫條件下處理城市生活污水中的應(yīng)用提供了新方向。污水處理廠出水硝態(tài)氮含量高,往往無法滿足排放要求,因此對于污水處理廠二級出水可以采用短程反硝化-厭氧氨氧化工藝進行深度處理。Cao等將污水處理廠二級出水(硝酸鹽廢水)與低碳氮比的城市生活污水相結(jié)合產(chǎn)生亞硝酸鹽,然后在厭氧氨氧化作用下實現(xiàn)深層次脫氮,在該過程中有少量的N2O產(chǎn)生,論證了短程反硝化-厭氧氨氧化在經(jīng)濟和環(huán)境上可行性。短程反硝化-厭氧氨氧化工藝的發(fā)展為高質(zhì)量濃度硝酸鹽廢水處理、高氨氮廢水厭氧氨氧化出水和城市污水深度脫氮的問題提供了新的處理思路。
4.4新型組合工藝
隨著對厭氧氨氧化工藝在實際城市生活污水處理中研究的深入,一些新型組合工藝的提出為厭氧氨氧化技術(shù)在實際工程的應(yīng)用提供了技術(shù)支持。為了克服傳統(tǒng)城市生活污水處理的高能耗和高污泥產(chǎn)量問題,Gu等將Anammox整合到厭氧固定床反應(yīng)器(去除COD)-序批式反應(yīng)器(B1)-厭氧氨氧化移動床生物膜反應(yīng)器(去除B1出水的NO-3-N)工藝中,從而實現(xiàn)節(jié)能運行和減少污泥產(chǎn)量。目前,如何有效地對NOB進行抑制及如何降低出水NO-3-N的質(zhì)量濃度是厭氧氨氧化研究中比較關(guān)注的2個問題。Wang等設(shè)計了一種同時去除煙氣中氮氧化物和氨水中氮氧化物的新型厭氧氨氧化法,探討了一氧化氮(NO)作為厭氧氨氧化菌長期穩(wěn)定的電子受體的可能性,研究表明,對于城市污水,去除氮氧化物的效率為70%~90%,總氮為40%~70%,COD為80%~90%,從而實現(xiàn)了具有潛力的應(yīng)用技術(shù)。
五、展望
厭氧氨氧化作為一種目前最節(jié)能的脫氮工藝,得到了越來越多的專家和學者的關(guān)注。雖然厭氧氨氧化技術(shù)在實際城市生活污水中的應(yīng)用性研究已經(jīng)取得了一定的進步,但是在季節(jié)性變化很大的環(huán)境條件下,如何在低溫低氨氮下高效縮短厭氧氨氧化生物群落的培養(yǎng)周期,如何有效地抑制NOB活性,研究開發(fā)高效生物載體,創(chuàng)新適合中國城市污水水質(zhì)特點的厭氧氨氧化處理工藝是目前尚待解決的問題。
如需要產(chǎn)品及技術(shù)服務(wù),請撥打服務(wù)熱線:13659219533
選擇陜西博泰達水處理科技有限公司,你永遠值得信賴的產(chǎn)品!
了解更多,請點擊itjobsdelhi.net